Excellent Thermoelectric Properties in monolayer WSe2 Nanoribbons due to Ultralow Phonon Thermal Conductivity

نویسندگان

  • Jue Wang
  • Fang Xie
  • Xuan-Hao Cao
  • Si-Cong An
  • Wu-Xing Zhou
  • Li-Ming Tang
  • Ke-Qiu Chen
چکیده

By using first-principles calculations combined with the nonequilibrium Green's function method and phonon Boltzmann transport equation, we systematically investigate the influence of chirality, temperature and size on the thermoelectric properties of monolayer WSe2 nanoribbons. The results show that the armchair WSe2 nanoribbons have much higher ZT values than zigzag WSe2 nanoribbons. The ZT values of armchair WSe2 nanoribbons can reach 1.4 at room temperature, which is about seven times greater than that of zigzag WSe2 nanoribbons. We also find that the ZT values of WSe2 nanoribbons increase first and then decrease with the increase of temperature, and reach a maximum value of 2.14 at temperature of 500 K. It is because the total thermal conductance reaches the minimum value at 500 K. Moreover, the impact of width on the thermoelectric properties in WSe2 nanoribbons is not obvious, the overall trend of ZT value decreases lightly with the increasing temperature. This trend of ZT value originates from the almost constant power factor and growing phonon thermal conductance.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

First-Principles Determination of Ultralow Thermal Conductivity of monolayer WSe2

By using first-principles calculations combined with the phonon Boltzmann transport equation, we systematically investigate the phonon transport of monolayer WSe2. Compared with other 2D materials, the monolayer WSe2 is found to have an ultralow thermal conductivity due to the ultralow Debye frequency and heavy atom mass. The room temperature thermal conductivity for a typical sample size of 1 ...

متن کامل

Thermoelectric properties of SnSe2 monolayer.

The 2H (MoS2-type) phase of 2D transition metal dichalcogenides (TMDCs) has been extensively studied and exhibits excellent electronic and optoelectronic properties, but the high phonon thermal conductivity is detrimental to the thermoelectric performances. Here, we use first-principles methods combined with Boltzmann transport theory to calculate the electronic and phononic transport propertie...

متن کامل

Significantly reduced thermal conductivity and enhanced thermoelectric properties of single- and bi-layer graphene nanomeshes with sub-10nm neck-width

When graphene is shrunk into ~10 nm scale graphene nanoribbons or nanomesh structures, it is expected that not only electrical properties but also thermal conductivity and thermoelectric property are significantly altered due to the quantum confinement effect and extrinsic phonon-edge scattering. Here, we fabricate large-area, sub10 nm singleand bilayer graphene nanomeshes from block copolymer ...

متن کامل

اثر تهی‌جای‌های گسترده بر خواص گرمایی نانونوارهای آرمچیری گرافن

This paper shows a theoretical study of the thermal properties of armchair grapehen nanoribbons in the presence of extended vacancies. Each graphene nanoribbons formed by superlattices with a periodic geometric structure, different size and symmetry of vacancies. The phonon dispersion, specific heat and thermal conductivity properties are described by a force-constant model and also by Landauer...

متن کامل

Anisotropic in-plane thermal conductivity of black phosphorus nanoribbons at temperatures higher than 100 K

Black phosphorus attracts enormous attention as a promising layered material for electronic, optoelectronic and thermoelectric applications. Here we report large anisotropy in in-plane thermal conductivity of single-crystal black phosphorus nanoribbons along the zigzag and armchair lattice directions at variable temperatures. Thermal conductivity measurements were carried out under the conditio...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2017